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A nonlinear system of three differential equations with three parameters defining
the dynamics of a search system for phase synchronization is considered, Quali-
tative analysis of the system is carried out with the use of Liapunov functions,
systemns of matching, surfaces without contact, and local theory of bifurcation of
multidimensional dynamic systems, It is established that the effective parameter
range is determined by the bifurcation of the saddle separatrix loop,

1, Introduction, We consider a system of three differential equations of the form
. . y . 1
F=y y=v—FF@—1, v=-—gv+ (L.1)
1/a
F(F-1)F@—

where a, b and Y are parameters of function F (p)e=c* (k > 2) . The system satis-



616 V.N.Belykh and V.I.Nekorkin

fies the following conditions:

F9) =F(9p +2n), —F(9) =F(—9), F,'(9) >0, o= (1.2)
(—o, @), Fo' () << 0, Q & (g, 21 — @), Fo' (@)= 0, F (po) =1

System (1,1) is specified in the cylindrical phase space G = §!' X Ri*(pe=SY
Y, v& R*. Cylindricity of the phase space implies the possibility of the existence in
it of recurrent motions not only of the oscillatory type (motions that remain recurrent
inthe % (¢ & R; y, v & R? covering space for G ),but also of the rotational type
(motions that loose the recurrency property in the covering space) [1, 2]. We refer to
recurrent trajectories of the oscillatory type, which differ from the equilibrium state, as
0 -trajectories, and to those of the rotational type in region y > 0 (y << 0) as the
@' (¢?) trajectories,

System (1. 1) is a mathematical model of an astatic systemn of phase synchronization
in conditions of linear variation of the input signal frequency [3] or of continuous search
with respect to frequency [4 — 6], In (1,1) 7V is the relative rate of frequency change,
and A and b are nonnegative parameters of the control system,

The capture mode in a phase synchronization system is simulated by the motion of the
representing point along the rajectory of system (1, 1) toward the equilibrium state
O, (¢ = const, y = v = 0). Investigation of dynamics of the search system of phase
synchronization consists in the determination of the critical rate of frequncy variation
¥ = ¥ (a, b) which defines the interval |y | <C v, (@, ) within which a capture
mode is realized for any initial conditions in region y < 0. This requires a qualitative
investigation of system (1,1),

In the degenerate case of b = 0 (and also in the case of a small parameter [7 ~ 9]
at the derivative for b = p <€ 1) the qualitative analysis of system (1, 1) with variables
9y and z=v— (a/b) [F (@) — y] for F (p) = sin ¢ is presented in [5}, and is ex-
tended in [6], Theorem 3, to the case of (1,2), The critical rate 71 {a, b) and the time
of transient processes was determined numerically in [10] for F (9) = sin ¢ and certain

values of « and b,

The qualitative analysis of system (1,1) is effected here for any 7 () satisfying(1,2)

and any &> 0.

2, Preliminary investigation, Let us consider system (1,1) in the parame-
ter region D where @ >0, 6 > (0 and y > (. Parameter y is assumedto be non-
negative, owing to the symmetry of system (1, 1), hence the substitution y = —vy, ¢ =
—@°, y = —y° and v = —p° does not alter system (1, 1),

Let us consider the control function w, == 22/ 2 outside the phase space of system

1,1
a.h G, = {p 8§y R; —jabt — 1]{1 +~ysgn(a— b)) <

v<<|ab—1|(1 —ysgn(a— b)), y<1; —(ab'—1)(1 +
N<r<0, > 1L b<a O<<o < (1 —ab™)(1 +
v, v>1, b>a}

In virtue of system (1, 1), the derivative of u is negative, hence we have the follow-

ing statement,
Statement 1, Region (. is stable,since for ¢ — -}oo all trajectories of system
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(1,1) penetrate from region G\ G, into it,
For b = a region G, degenerates into the cylinder » = 0 , the only one asympto-
tically stable integral surface of system (1,1), Motions on the integral cylinder » = 0

are determined by the conservative system whose integral is
®

2
He. =4 —5\v—FOIE="h 2.1)
0

Let us consider in G, the set of cylinders w, = y -+ bv = const. Since in
virtue of system (1, 1) and in accordance with (1. 2), the derivative of function w, is po-
sitive for Y > 1 ,when w, = — [F (@) — y] > 0, and the cylinders w, = const
are surfaces without contact, Then, using Statement 1, we obtain the following statement,

Statement 2, For p > 1 system (1,1) has no singular trajectories, for ¢ — +
oo all of its trajectories penetrating (or found in) G, tend to infinity ¥ — - oo.

3, Equilibrium states, The equilibrium states of system (1,1) lie in G, along
the circumference y = v = 0 and are determined by two roots: @ (v) = 10, @y
and @, (y) € (@, 7] of equation y — F (p) = 0. For 0 < y << 1 system (1,1)
has two states of equilibrium: O, (¢ = ¢, (y), ¥y = v = 0) and O, (¢ = 9, (7),
y = v =0); for y =1 it has one equilibrium state Oy (¢ = @¢» ¥y = v = 0)
which vanishes for y > 1. The characteristic equation for equilibrium states is of the
T e b bRy (g 4 bR () = 0, 10,12 (D)

In virtue of (1.2) £, (9,) = m (y) > 0, Fo' (9,) = — n (y) < 0 andFo’ (@o)=
0. According to (3,1) for b < a, O, is either a stable node (x; <<0, i = 1, 2, 3),
or a stable focal point (x%; << 0, Re %y,5 << 0), and for & >> a it is either a saddle
(% << 0, 4,3 > 0) orasaddle-focus (#; < 0, Re xy,3 > 0). In the parameter
region b > f (a, n (y)) > a, where f(a, n(y)) is the positive root of equation
27n (y) b* — an (y) l4a®n (v) + 181 b — a®?n (y) — 4 = 0 in b, the equilibrium
state O, is a saddle-focus (%, > 0, Re %,,3 < 0), and in region b << f (a, n (y))
it is a saddle (%; > 0, %,,3 << 0).

According to [11] the equilibrium state O, Istraversed by two manifolds: a one-dimen-
sional curve consisting of O, and two unstable separatrices §,~ and S§,~ outgoing
into regions G,! = G,? (y >> 0) and G,® = G, (y < 0) ,respectively, and the two-
dimensional stable surface 'S*.

For y =1, 0,is a complex equilibrium state with two zero roots, Since for y =1
surfaces w, = const are in contast with trajectories of system (1, 1) only at the cylin-
der which passes through O,, we obtain from Statement 2 that for y= 1 all rajecto-
ries of system (1, 1), except those in contact with O, tend to infinity when ¢ — 4 oo.
Below we assume that 0 < y << 1.

Let us introduce definitions of the structure of phase space separation into trajectories
of system (1. 1),

Structure K corresponds to asymptotic stability O, throughout the space G, except
the saddle O, and its stable separatrix surface S*. The manifolds §,,~ and S+ are
necessarily disposed so that .5},,~ tends to O;, and S* tends to infinity,

Structure K~ does not contain 0- and Q-trajectories, O, is unstable, §, ,~ tend to
infinity, and the trajectories on surface §* tend for £ — — oo to O, and escape to
infinity,
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Structure [ is structure K complemented by the saddle ¢'-cycle (Fig, 1, a),

Structure L~ is structure K~ complemented by the stable @t-cycle,

Structure M does not contain 0- and @-trajectories, §,~ tendsinregion G,' to
infinity, S,~ tendsto O, and §* [ G, tends in region G,® to infinity encompass-
ing the stable equilibrium state O, and restricting its region of pull (Fig, 1,b),

Fig, 1

Structure M~ does not contain 0- and @-wajectories, ;" and §,~ move to regions
Gy' and to infinity, a part of trajectorieson S (] G, tend for t > — oo to Q,,
while another part moves to regions (,2 and infinity,

4, Lispunov functions, Let us consider functions of the form

@

Vi= S o—ay@+wr -t +20—0 | FO—m &} @D
(=1 p—a)>0 (i=1,2) N

whose derivatives satisfy the inequalities
(— D)V, = >0 (i=1, 2) (4.2)
in virtue of system (1, 1),

For ¥ = 0, V,; are periodic Liapunov functions [1, 2], hence inequalities (4,2)
prove the following statement,

Lemma 1, (1) For y = 0 and b << a system (1, 1) has structure K ; (2) for
v = 0 and & ~> a it has structure K.

For ¥ > O functions (4,1) are not periodic with respect to . We assume that they
are determinate in the covering space /t® ,notin G,, We introduce the notation
¢ = Vi(gy, 0, 0).

Lemma 2. (1) System (1.1) has no o-trajectories; (2) for y > 0 and 6 << a region
Q*: V{9, y, v) < ¢;, © < ¢, belongs to the attraction region of stable equilib~
rium state O, ; and (3) for ¥ > 0 and b << a (b > a) system (1.1) has no % (gp?)-
trajectories, and for y >> O infinity in space G,! is stable and in G,? unstable.

Proof, (1)In virtue of (4,2) and statement 2,1 the trajectories of system (1,1) can-
not reach one and the same level V; = const, hence system (1,1) has no o-trajectories.
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(2) The statement follows from that, that in region Q* function ¥, is positively determi-
nate and satisfies (4,2), (3) For y = 0 surfaces ¥; = c(c > ¢;} are 2 si-periodic with re-
spect to @,and the derivatives V;" satisfy in virtue of system (1,1) in region G, for
¥ == 0 the inequalities

(1 Vi=b2+y(b—a)y>0, (—1)iy>0

V<o, (D y+ 00— (1 +927<0 (i=1,2)
which proves the last statement of the lemma,

6., Systems of matching, Let us consider the auxilliary system A; of the form
(2.1),where p;, =v — | b — a|a~* [1 — (— 1)}yl is substituted for parameter Y
and in the parameter space (— 1)i (b —a) >0 (i =1, 2).For y < b~ la +
(— 1)i (b — a)] systems A; have each two equilibrium states, one with respect to the
center (¢ = @y, y = 0) and the second with respect to the saddle (¢ = @, y =
0) (i =1, 2). We inroduce surfaces ¥; determinate in G, and formed by pieces

of systems A; separatrices of the form
®2i

W; = {H (@ 9, Ti) = —ab™? S [t — F I dE, (— iy <<0,ve G,,}

(i=1,2)

Matching the vector fields of system (1,1) and 4; with the use of Statement 1, we
find that the trajectories of system (1,1) intersect surfaces W, in the direction of increa-
sing y without contact with the latter,

Lemma 3, (1)Inthe parameterregion A;:ab™! —1<y<1, a271 L
b << a system (1,1) has structure M , and (2) in the parameter region A, :1 —
ab™ < y<<1, b>a asystem (1,1) has structure M~

Proof, The disposition of surface W, (W,), which is passing across straight line
P = Qa (P), ¥y = 0, tends in region G,1(G,? to infinity, implies the absence of ¢' -

{ ¢;-) majectories, Considering that in the parameter region A; (4,) the saddle 0, lies
in virtue of inequality @, <C @, under (above) the surface Wi (W,), we find that §;-(S+),
which in region G,!(G,?) intersects Wi (W,) ,tends to infinity, and S+ (§,-) remains
under (above) surface Wi (W,), while moving into region G, (G,!). Then, using Lemma
2, we establish that in the parameter region A; (4;) system (1, 1) has the structure

M (M=),

8, Bifurcations and ¢-cycles, We denote by Iy (I,) the saddle (saddle-
focus) separatrix loop O,, produced by separatrix 3~ (Sy~) emanating from O, and
returning to it by executing in region G,! (G,?) a turn with respect to ¢,

Theorem 1, There exist functions y = y, (a, b) and y = y, (a, b) associated
with the existence of loops I'; and I, , respectively, which satisfy conditions

1, 0<bLa2m
0< @) <| =y i Tl D=0 6. 1)

O< (g, 0)<<1—ab’t, b>a, v,(a,0) =0 (6.2)

Proof, Lemmas1 and 2 imply that for y > 0 manifolds §;4- and S* intersectthe
plane @ =qu. Let y1~and u~ (yo~ and vy-) be the coordinates of the point at which
separatrix S~ (§:-) intersects for the first time the plane @ = @1 from the side @<
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1 (9> 91),.and let y»* (9) (12* (v) be equations of the curve along which surface S+
intersects for the first time the plane @ = @1 from the side @ > @1 (¢ < ¢1). We intro-
duce distances p1(y, @, b) = y1— — 1" () and p,y (y, @, b) = ya~ — yo* (12) which
are continuous functions of parameters determinate in region 4 >y > 0. In virtue of
Sects, 2, 3 and of lemmas, functions @; (y, e, b) (i = 1, 2) satisfy conditions

i (0, 8. 0) <O (— 1) (b —a)>0, p; (0, a, a) = 0 (6.3)
i1 &, B} >S0(vE A 1 (— DI — a)>0), lim p; (y, a, 8} >0
T—1

Taking into account (6, 3) and the continuity of gy (¥, ¢, b) and using Cauchy's theo~
rem about zeros of functions, we establish the existence of functions v; (e, b) as the
solutions of equations p; (y, a, b) = 0 (i = 1, 2), which satisfy conditions (6,1) and
(6. 2), respectively, The theorem is proved,

Remarks, 1) Theorem 1 does not prove the single-valuedness of functions y;,
which is assumed below for simplicity of exposition,

2) According to [5, 6] there exists the limit relationship im »—e V1 (a, b) =
¥° (@), where 7° (a) is the bifurcation curve of the separatrix loop of the degenerated
two-dimensional system [6],

Theorem 2, For b <C a the saddle '-cycle is generated at infinity with para-
meter y increasing from zero, For y = p, (g, b) this cycle descends in region G}
and merges with loop I, .

Proof, We introduce region g, periodic with respect to ¢ and homeomorphic to a
torus, whose boundary consists of the following surfaces:

wmho=bt(e—b) {1 —%), w v=—0bta—~b{ +y), ur:Vile,
Bno)=c¢ vy=0

and us, where up- is a surface without contact, periodic with respect to ¢, lying in re-
gion @, below ui-, intersected by trajectories of system (1, 1) in the direction of de-
creasing y, and existing for v < y: (a, b) and b < a because of the disposition of mani-
folds S~ and S+ (p1 (y, @, b) < 0). Let 7 be the image of the part of plane p: {p=¢°=
consy, y > ¥° and v € (wi*, us¥)} onto itself, generated by trajectories of system (1,1),
Using Statement 1 and Lemma 2, we find that the vector field of the image of 7' at the
boundary I* of the simply -connected region g* = p{)| g is oriented as follows: along
cwrves u;- {) p (i = 1, 2) it is directed into the exterior of region g*% and along curves
uit(\p (i = 1, 2) into region p (either g* or p ™ g9). As the result we have ind (7) ;=
—1, hence the image of 7 in region g* has at least one stationary saddle point related
to the saddle @'-cycle of system (1,1), Since by lemmas1and 2 w~ for y — 0
departs to infinity, and for vy = 0 system (1, 1) has the K-structure, hence for y — ¢ the
saddle @!-cycle tends to infinity, Owing to the relationships between roots of Eq,(3.1)
the conditions of the theorem in [12], which states that for ¥ = y1 (a, b) the saddle ¢*
cycle merges with loop T, are satisfied for 0, when b < a ,

Corollary, Lemma (4.2) and Theorems 1 and 2 imply thatsystem (1, 1) has in the
parameter region d; : 0 < y << v, (¢, b) and b <C @ (Fig, 2) structure L and in re-
gion dy 1y, (a, b) << p<<1 and b < a its swucture is M.

Theorem 3, (1)For b >> a and parameter y increasing from zero a stable ¢*
cycle is generated from infinity, which in region y <C a (a, &) moves upward over
region G2 (2) Inregion 8;: {a™2 >supyepo,y n (y) =n° and b < by}, where
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b, is the positive root of the equation b = — 2-1g 4 [471a® 4 2 (n (y, (a, B))) 2],
the stable @3-cycle merges for y == v, (@, b) with loop I', . Inregion §,: {a™ <C
n® and b <C by}, where b, is the positive root of equation b = f (a, n (y, (a, b)),
there exists region dy (6, for whose points system (1, 1) has two @*-cycles: one sta-
bie and one saddle, Inregions §,: {¢~2 > n° and b > b,}, §,: {a~2 = n®and
b>a}. and8;: {a << n°and b > by} there exists a parameter space d,, for
whose points system (1,1) has a denumerable number of saddle ¢2-cycles,

Proof, (1)Statement1, Lemma 2, and the disposition of manifolds §,~ and §*
in G,? imply that for v <y, (a, b) (p, (v, a, b) < 0) there exists region & C G,* peri-
odic with respect to ¢, homeomorphic to a torus which is mapped onto itself by trajec-
tories of system (1, 1), Using Brauer’s theorem, we conclude from this, that at least one
stable @® cycle must exist in g;, Since for y = 0 system (1,1) by Lemma 1 has struc-
ture K-, the g@?®-cycle tends to infinity when y — U , (2) Using [12, 13] and analyzing
the relationship between roots of Eq, (3, 1) for 0,, we establish that in region §; (§,) a
stable (saddle) g®-cycle is generated from loop T'; with y decreasing (increasing) at
transition through ¥y, , while in regions §; (i = 3, 4, 5) a denumerable number of saddle
g?-cycles exists in the neighborhood of I',, By Lemma 3 system (1, 1) has no g-cycles
in region A, , hence all generated @2 cycles must vanish with increasing y . From this
we find the ¢®-cycle generated from infinity merges in region §; with loop I;; that in
region §, curve ¥ = vy associated with the bifurcation of multiple @*-cycles which
together with curve ¥ = 7. constitute the region of two ¢%cycles di: {¥2 <7 <V}
and that bifurcation curves y = 9.7 (j = 1, 2) , which are the boundaries of the denu-~
merable set of @%-cycles d;: {y;} <y < 9.%,exist in regions 8; (i = 3, 4, 5) . The
theorem is proved,

Corollary, The region of b >> a is subdivided for a™ 2> n° by the bifurcation
curves 1y, Yo Yo (f = 1, 2) intoregions d., ds: {0 <y << y2}\d: and d, :
{ve <y <<1]\{d: U dn}, andfor d~2 << n° into regions ds, dy, d, and d,, (Fig.
2), By Lemmas 2 qnd 3 and Theorems 1 and 3 system (1, 1) has structure L~ in region
dy ,structwre M~ in region dy ,stucture M~ complemented by two @3-cycles in
region dj ,and in region d, it has a denumerable set of @3-cycles with manifolds
813~ and S* disposed as in structure L~ (M) for ¥ < ¥p (¥ > Ta)-

Remark, Parameter regions
8; (i =1, 2, ..., 5)obviously ex-
ist in Theorem 3, if n (y) is a mono-
tonic function with one maximum at
¥ =0 (e.g. n(y) in the case of
F = sin ¢). In the case of nonmo-~
notonic 7 (y) some of the §; and, con-
sequently, dy and d, may be absent,

We note in conclusion that the work-
ing parameter region of the system of
phase synchronization is the d, region which comesponds to structure L. The critical
rate of frequency change — the boundary of region d; — vy = Y1 (a, &) — is determ-
ined by the bifurcation of loop IY.

Fig, 2
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