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A nonlinear system of three differential equations with three parameters defining 

the dynamics of a search system for phase synchronization is considered. Quali- 
tative analysis of the system is carried out with the use of Liapunov functions, 

systems of matching, surfaces without contact, and local theory of bifurcation of 
multidimensional dynamic systems. It is established that the effective parameter 
range is determined by the bifurcation of the saddle separatrix loop. 

1. Introduction. We consider a system of three differential equations of the form 

cp: = y, y’=u-~$F(cp)--1, v’= ++ (1.1) 

where a, b and y are parameters of function j’ (cp)& (k > 2) , The system satis- 
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fies the following conditions : 

System (1.1) is specified in the cylindrical phase space 
y, VER2). 

r’$ = $1 x &s (q E $1; 
Cylindricity of the phase space implies the possibility of the existence in 

it of recurrent motions not oniy of the oscillatory type (motions that remain recurrent 
in the R3 (9 E R; y, u E R2) covering space for G ),but also of the rotational type 

(motions that loose the recurrency property in the covering space) [ 1, 23. We refer to 
recurrent trajectories of the oscillatory type, which differ from the equilibrium state, as 
0 -trajectories, and to those of the rotational type in region y > 0 (y ( 0) as the 
ipl (ips) trajectories. 

System (1.3) is a mathematical model of an astatic system of phase synchronization 
in conditions of linear variation of the input signal frequency [3] or of continuoussearch 
with respect to frequency [4 - 61 e In (1.1) y is the relative rate of frequency change, 
and A and b are nonnegative parameters of the control system. 

The capture mode in a phase ~nc~onization system is simulated by the motion ofthe 
representing point along the trajectory of system (1.1) toward the equilibrium state 
0, (cp -= const, ZJ = D = 0). Investigation of dynamics of the search system of phase 
synchronization consists in the determination of the critical rate of frequncy variation 
y = yl (a, 6) which defines the interval 1 y f < y1 (a, b) within which a capture 
mode is realized for any initial conditions in region t.~ ( 0. This requires a qualitative 
investigation of system (1.1). 

In the degenerate case of 6 = 0 (and also in the case of a small parameter p - 93 
at the derivative for b = p (( lt the qualitative analysis of system (1.1) with variables 
cp, Y and Z= v - (a i b) jP (~rp) - 71 for P (tp’~ - sin q is presented in [S]. and is ex- 

tended in @J, Theorem 3, to the case of (1.2). The critical rate yi (a, b) and the time 
of transient processes was determined numerically in [ 101 for F (9) = sin rp and certain 
values of a and 6 . 

The qualitative analysis of system (I. 1) is effected here for any I: (cp) satisfying(l.2) 
and any b > 0. 

2, Ptelfminrry invsrtigrttoa, Let us consider system (X.1) in the parame- 
ter region D where a > 0, b > 0 and y > 0. Parameter y is assumed to be non- 
negative, owing to the symmetry of system (1, l), hence the substitution y = -yt cp = 
--cp’, y = -y* and v = -u” does not alter system (1.1). 

Let us consider the control function wr = v2 / 2 outside the phase space of system 
U. 11 

G,=(cpE6;.y~R; -/ab-l-l/(f +ysgn(a-_6))< 
u < I d-l--l I(1 - y sgn (a - b)), y f 1; -(ab-l - 1)(1 + 

y) < t’< 0, y > 1, b < a; 0 < 2t < (I - ub-l)(l + 

19, Y > 1, b > a) 

In virtue of system (1. l), the derivative of zvriis negative, hence we have the follow- 
ing statement. 

Statement 1. Region C,, is stable, since for t -+ -t_oo all trajectories ofsystem 
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(1.1) penetrate from region G\G, into it. 
For b = a region G, degenerates into the cylinder u = 0 , the only one asympto- 

tically stable integral surface of system (1.1). Motions on the integral cylinder u = 0 
are determined bythe conservative system whose integral is 

bet us consider in G, the set of cylinders ws = y + bv = const. Since in 

virtue of system (1.1) and in accordance with (1.2). the derivative of function W2 is po- 

sitive for Y > 1 , when w, = - [F (cp) - yl > 0, and the cylinders w, = const 
are surfaces without contact. Then, using Statement 1, we obtain the following statement. 

Statement 2. For y > 1 system (1.1) has no singular trajectories, for t --t + 

00 all of its trajectories penetrating (or found in) G, tend to infinity y 3 + 00. 

3. Equflibrium (tatea, The equilibrium states of system (1.1) lie in G,, along 

the circumference y = v = 0 and are determined by two roots: 'pl (y) E LO, 'p,,) 
and ‘p2 (y) E (cpO, nl of equation y - F (cp) = 0. For 0 <_ y < 1 system (1.1) 
has two states of equilibrium: 0, (cp = ‘pr (r), y = v = 0) and 0, (rp = ‘p2 (y), 
y = 21 = 0); for y = 1 it has one equilibrium state 0, (9 = ‘pO, y = v = 0) 
which vanishes for 7 > i. The characteristic equation for equilibrium states is of the 
form 

x3 + b-lx2 + ab-lF,’ (vi) x + b-lFp’ (cpJ = 0, i =O, 1, 2 (3.1) 

In virtue of (1.2) F,’ (cpJ E m (y) > 0, Fq’ (cp2) 5 - n (y) ( 0 andF,’ (TO)= 
0. According to (3.1) for b < a , O1 is either a stable node (xi (0, i = 1, 2, 3), 
or a stable focal point (x1 < 0, Re xac3 < 01, and for b > a it is either a saddle 

(x1 < 0, %a,3 > 0) or a saddle-focus (~1 < 0, Re x2,4 > 0). In the parameter 
region b > f (a, n (y)) > a, where f (a, n (r)) is the positive root of equation 
27n (y) b2 - an (y) [4a2n (y) + 181 b - u2n (y) - 4 = 0 in b, the equilibrium 

state 0, is a saddle-focus (xi > 0, Re xzr3 < 0), and in region b ( f (a, n (y)) 
it is a saddle (xi > 0, x2,3 < 0). 

According to fll] the equilibrium state 0, is traversed by two manifolds: a one-dimen- 
sional curve consisting of 0, and two unstable separatrices S,- and S2- outgoing 

into regions G,l = GV2 (y > 0) and G,,2 = G, (y < 0) ,respectively, and the two- 
dimensional stable surface St. 

For y = 1 , 0, is a complex equilibrium state with two zero roots. Since for y =l 
surfaces w, = const are in contaft with trajectories of system (1.1) only at the cylin- 
der which passes through O,, we obtain from Statement 2 that for y= 1 all trajecto- 
ries of system (1.1). except those in contact with 00, tend to infinity when t + + 00. 
Below we assume that 0 Q y ( 1. 

Let us introduce definitions of the structure of phase space separation into trajectories 
of system (1.1). 

Structure 5 corresponds to asymptotic stability 0, throughout the space G, except 
the saddle 0, and its stable separatrix surface St. The manifolds S1,2- and St are 

necessarily disposed so that .SI,2- tends to O,, and St tends to infinity. 
Structure K- does not contain O- and q-trajectories, 0, is unstable, S1,2- tend to 

infinity, and the trajectories on surface S+ tend for t + - 00 to Or and escape to 
infinity. 
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Structure L is structure K complemented by the saddle q&cycle (Fig. 1, a). 
Structure L- is structure K- complemented by the stable q%zycle. 
Structure M does not contain 0- and q-trajectories, &- tends in region G,l to 

infinity, A’,- tends to 0, and Sf n G, tends in region G,s to infinity encompass- 

ing the stable equilibrium state 0, and restricting its region of pull (Fig. 1, b). 

a 
Fig. 1 

b 

Structure M- does not contain o- and rp-trajectories, 8,” and Ss- move to regions 

GV1 and to infinity, a part of trajectories on S+ fl Go tend for t -+ - oo to Or, 
while another part moves to regions G,* and infinity. 

4, tfrpunov fttnCtfO~8, Let us consider functions of the form 

Vi = + {~~--a)(Y+bu)s_bsus+2@-a) 5 [F(E)--_J a) (4.1) 

‘pa 
(-1)‘(!M2)>0 (i z 1, 2) 

whose derivatives satisfy the inequalities 

(- l)iVi’ = b2v2 > 0 (i = 1, 2) (4.2) 
in virtue of system (1.1). 

For y = 0 , Vi are periodic Liapunov functions [ 1, 21, hence inequalities (4.2) 

prove the following statement. 

Lemma 1. (1) For y = 0 and b < a system (1.1) has structure K; (2) for 
y = 0 and li > a it has structure K-. 

For y > 0 functions (4.1) are not periodic with respect to cp. We assume that they 
are determinate in the covering space K3 , not in G, . We introduce the notation 

ci = vi (cps, 0, 0). 
~,,emm a 2. (1) System (1.1) has no o-trajectories; (2) for y > 0 and b < a region 

R+ : v, (v, y, 8) -=I Cl? cp -=z ‘pz 
belongs to the attraction region of stable equilib- 

rium state 0, , - and (3) for y > 0 and b < a (b > a) system (1.1) has no ‘p2-(cpl)- 
trajectories, and for y > 0 infinity in space Gvl is stable and in G,’ unstable. 

Proof. (1) In virtue of (4,2) and statement 2.1 the trajectories of system (l-1) can- 
not reach one and the same level vi = con&, hence system (1.1) has no o-trajectories. 
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(2) The statement follows from that, that in region SJ* function V, is positively determi- 
nate and satisfies (4.2). (3) For y = 0 surfaces V, = c(c > ci) are 2 n-periodic with re- 
spect to tp, and the derivatives Vi’ satisfy in virtue of system (1.1) in region Gu for 
y # 0 the inequalities 

(- i)i Vi’ = b%= $ y (b - 4 Y > 0, (- qi y > 0 

(- iJi vi’ < ‘4 (- 1)’ iy + (b - a) (1 + y) 2 plJ < 0 (i = 1, 2) 

which proves the last statement of the lemma, 

6. Systems of matching, Let 11s consider the auxilliary system A i of the form 
(2.1). where yi s y - 1 b - Q 1 a-l it - (- $)‘y! is substituted for parameter y 
and in the parameter space (- l)i (b - a) > 0 (i = 1, 2). For y C b-l Ia + 
(- l)i (b - a)] systems A i have each two equilibrium states, one with respect to the 
center (cp = a, xi, y = 0) and the second with respect to the saddle (cp = qsi, y = 
0) (i = 1, 2). We introduce surfaces Wi determinate in Gt, and formed by pieces 
of systems A i separatrices of the form 

“2i 

Wi = {H (9, y, ri) = - oh-i 1 
Cl 

rri. - F(E)1 &, (- 4)“~ < 0, u E G,} 

(i = 1, 2) 
Matching the vector fields of system (1.1) and d i with the use of Statement 1, we 

find that the trajectories of system (1.1) intersect surfaces IVi in the direction of increa- 
sing y without contact with the latter. 

Lemma 3. (1) In the parameter region Al : ah” - 1 < y < 1, a2-1 < 
b ( a system (1.1) has structure M , and (2) in the parameter region A2 : 1 - 
uD_’ < y ( 1, b > a a system (1.1) has structure M-. 

Pro o f. The disposition of surface W1 (IV,), which is passing across straight line 
cp = cpal (q&, y = 0, tends in region G,,l (G,z) to infinity, implies the absence of tp’ - 
( cpz-) trajectories. Considering that in the parameter region Al (A,) the saddle Gs lies 
in virtue of inequality q)s < ‘pal under (above) the surface WI (IV,), we find that .%‘r(5’+), 
which in region G,l (G,t) intersects IV1 (IV,) , tends to infinity, and Sf (SK) remains 
under (above) surface WI (W,), while moving into region G,* (GJ). Then, using Lemma 
2, we establish that in the parameter region A1 (4) system (1.1) has the structure 
1M (M-). 

0‘ Bifurc&tions rnd pcycfm, We denote by i’, (rs) the saddle (saddle- 
focus) separatrix loop 4, produced by separatrix &- (ss-) emanating from 0s and 
returning to it by executing in region G,l (Gz) a turn with respect to cp . 

Theorem 1. There exist fuuctions y = yi (a, b) and y = ys (a, b) associated 
with the existence of loops r, and I’s ,respectively, which satisfy conditions 

0 < y2 (a, b) < 1 - al+, 0 > 4 Y8 (a, a) = 0 (6.2) 

Pr oo f, Lemmas 1 and 2 imply that for y >, 0 manifolds So,%- and S+ intersect the 
plane 0 = cpl. Let YI- and ti- (~a- and L”$-) be the coordinates of the point at which 
separatrix Sl- (SZ-) intersects for the first time the plane 9 = 41 from the side cp < 
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PI1 (T> cpx),. and ler ~1” (4 (YS* (a)) be equations of the curve along which surface S+ 
intersects for the first time the plane q = 931 Tom the side 9, > ‘pl(V < cp~). We intro- 
duce distances pt (r, a, b) = yl- - ~1” (VI-) and Pa (r, a, b) = ya- - ~a+ (u2-) which 
are continuous functions of parameters determinate in region 1 > y > 0. III virtue of 
Sects.2, 3 and aflemmas, functions pi (y, a, b) (i =: 1, 2) satisfy conditions 

pi (0, a. b) < 0 (- Qi (b - a) > o, Pi (0, a, a) zz 0 (6.3) 
Pi (V* *+ b) > 0 (Y E 4 u (- t)i (b - a) > o), 1ir.u pi (7, 6, b) > 0 

Y-+X 

Taking into account (6.3) and the continuity of PJ (r, a, 5) and using Cauchy’s theo- 
rem about zeros of functions, we establish the existence of functions yi (a, b) as the 
solutions of equations p, (y, Q, b) = 0 (i = 1, 2), which satisfy conditions (6.1) and 
(6.2), respectively, The theorem is proved, 

Remarks. 1) Theorem 1 does not prove the single-valuedness of functions yi, 
which is assumed below for simplicity of exposition, 

2) According to [5. 61 there exists the limit relationship lim b-o YI ((4 b) =: 
To (a>, where 7” (a> is the bifurcation curve of the separatrix loop of the degenerated 
two-dime~oM1 system [6], 

Theorem 2. For 0 < a the saddle @-cycle is generated at infinity with para- 
meter y increasing from zero. For y = A (a, 17) this cycle descends in region G,” 
and merges with loop PI, 

Proof, We introduce region gl periodic with respect to 9, and ~omeom~p~c to a 
torus, whose bo~da~ consists of the following surfaces : 

and ua-, where nz.- is a surface without contact, periodic with respect to rp I lying in re- 
gion G,I below Q-, intersected by trajectories of system (1.1) in the direction of de- 
creasing 3, and existing for y ( yi (a, bf and b < a because of the disposition of mani- 
fo.lds SK and S-t (PI (y, a, b) < 0). Let T be the image of the part of phnep: {rp=q*= 
consc, Y > 8 and u E (@I+, ~a+)} onto itself, generated by trajectories of system (I, 1). 
Using Statement 1 and Lemma 2, we find that the vector field of the image of 3’ at the 
boundary Iy of the simply-connected region @ _= p 9 go is oriented as follows : along 
cnrves ui- n p (i -= 1, 2) it is directed into the exterior of region gs and along curves 
U~+~JI (i = 1, 2) into region p (either gs M p \ g”). As the result we have ind (T),, L= 
-1, hence the image of T in region gs has at least one stationary saddle point related 
to the saddle @-cycle of system (1.1). Since by Lemmas 1 and 2 UI- for y - 0 
departs to infinity, and for y = o system (1.1) has the K-structure, hence for y - 0 the 
saddle ‘pl-cycle tends to infinity. Owing to the relationships between roots of EQ. (3.1) 
the conditions of the theorem in 1121, which states that for y = ye (a, b) the saddle Q1- 
cycle merges with loop T’l tare satisfied for Oz when b < Q . 

Corollary. Lemma (4.2) and Theorems 1 and 2 imply thatsystem (1, 1) has in the 
parameter region dI : 0 ( y ( yl (a, b) and b < a (Fig. 2) structure L and in re- 
gion rl, : yl (a, b) c y < 1 and b < a its structure is n/r. 

Theorem 3. (1) For b > a and parameter y increasing from zero a stable 9_a* 
cycle is generated from infinity, which in region y (: ‘ya (a, 6) moves upward over 
region %G,$_ (2) In region 6,: (a-” > supYE[,,, 1) n fv) zz n” and b < b,) , where 
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b, is the positive root of the equation b = - 2-k + [4-W + 2 (n (yz (a, b)))-11”~) 
the stable @-cycle merges for y = y% (a, b) with loop ra + In region 6,: {a-a ( 
n’ and b < ba}, where 4 is the positive root of equation b = f (a, n (A (a, 6))), 
there exists region dk C $ for whose points system (1.1) has two rp%ycles: one sta- 

ble and one saddle, In regions 6, : (a-” > no and b > 4 ), 8, : (a-” = n” and 
b > a). and 8, : (a-” ( no and b > &) there exists a parameter space d,, for 
whose points system (1‘1) has a denumerable number of saddle CpQycles. 

Proof, (1) Statement 1, Lemma 2, and the disposition of manifolds &- and S+ 

in G? imply that for Y <vz (a, Q (pz (Y, a, bf < 0) there exgsts region g% c =%? peri- 

odic with respect to cp s humeom~~ic to a torus which is mapped onto itself by rrajec- 
tories of system (1,1). Using Brauer’s theorem, we conclude from this, that at least one 

stable @-cycle must exist in g, . Since fop y = 0 system (1.1) by Lemma 1 has struc- 

ture I?-, the q&cycle tends to infinity when y 4 i) l (2) Using [12, 131 and analyzing 

the relationship between roots of Eq, (3,l) for Cr,, we establish that in region e1 (6%) a 

stable (saddle) q%-cycle is generated from loop fa with y decreasing {in~easing) at 

transition through 7% , while in regions 6* (i = 3, 4, 5) a denumerable number of saddle 
~p%ycles exists in the ~igh~ho~ of I?, _ By Lemma 3 system (I, 1) has no ‘p-cyclea 

in region A8 , hence all generated Q+- cycles must vanish with increasing y ti From this 

we find the cp%ycle generated from infinity merges in region 6, with loop I’,; that in 
region 6, curve y = 7s associated with the bifurcation of multiple CpQycles which 

together with curve Y = “f’2 constitute the region of two cp*-cycles dr-: {ya 5 y < yk_; 
and that bffurcation curves y = yCJ (i = i, 2) , which are the boundarie’s of the denu- 

merable set of tp2-cycles d, : {yeI < y < ye*) t exist in regions & (i = 3, 4, 5) . The 
theorem is proved, 

Corollary, The region of b > a is subdivided for asa > n” by the bifurcation 

curves ysyzl ok, yCi (i = 1, 2) into regions d,, d3 : (0 < y < y3 )\d, and d4 : 

h < Y < W4dc U dd+ and for dv2 < no into regions da, dd, d, and dk(FiG 
2). By Lemmas 2 qnd 3 and Theorems 1 and 3 system (1.1) has structure L- in region 
da , structure M- in region 4 , structure M- complemented by two cp%ycles in 
region dk , and in region d, it has a denumerable set of cp%zycles with manifolds 
S 1, a - and Sf disposed as in structure L- (M-) far Y < I$ (Y > J%)- 

Remark. Parameter regions 
6; (i = I, 2, * . ., 5) obviously ex- 
ist in Theorem 3, if n (y) is a mono- 
tonic function with one maximum at 

y = 0 (e. g. n (7) in the case of 
F = ain cp). In the case of nonmo- 
notonic n (~1 some of the & and, con- 

iz sequently, dk and de may be absent. 

Fig. 2 
We note in conclusion that the work- 

ing parameter region of the system of 
phase sy~c~o~~zatio~ is the dl region which corresponds to structure L. the critical 
rate of fequency change - the boundary of region dI - y = ~1 (a, b) - is determ- 
ined by the bifurcatian of loop rI. 
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